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Abstract
This paper proposes a real-time method to compute multiple scattering in non-homogeneous participating media
having general phase functions. The volume represented by a particle system is supposed to be static, but the
lights and the camera may move. Lights can be arbitrarily close to the volume and can even be inside. Real-time
performance is achieved by reusing light scattering paths that are generated with global line bundles traced in
sample directions in a preprocessing phase. For each particle we obtain those other particles which can be seen
in one of the sample directions, and their radiances toward the given particle. This information is stored in an
illumination network that allows the fast iteration of the volumetric rendering equation. The illumination network
can be stored in two-dimensional arrays indexed by the particles and the directions, respectively. Interpreting
these two-dimensional arrays as texture maps, the iteration of the scattering steps can be efficiently executed by
the graphics hardware, and the illumination can spread over the media in real-time.

1. Introduction

Physically plausible rendering of participating media simu-
lates multiple scattering effects [Max94, NDN96, LBC95].
Multiple scattering algorithms can be considered as particu-
lar ways to generate light paths connecting the light sources
to the eye. The computation time can be reduced if the steps
of paths are reused and are not generated again when they
are needed.

Path reuse is a common technique of advanced global il-
lumination methods developed for surface and volume ren-
dering. Steps of the path can be reused in bi-directional and
even in classical path tracing [LW96, BSH02]. Metropo-
lis light transport reuses path parts that are left un-
changed by the current perturbation [PKK00]. Instant ra-
diosity [Kel97] and photon mapping [JC98] reuse a shoot-
ing path for all gathering paths. Precomputed radiance
transfer [SKS02] and finite-element based iteration meth-
ods [Neu95, SK99, DMK00] can also be interpreted as path
reuse techniques. Whenever the radiance of a patch or a
voxel is shot or gathered, all paths ending here are simulta-
neously extended. Path reuse is more explicit in global line
global illumination methods that exchange radiance along
globally sampled lines [BF89, Sbe96, Pre65]. Global lines

are worth organizing in parallel or perspective bundles since
this allows the exploitation of the rendering hardware and
the application of incremental scan conversion algorithms
[BF89, Neu95, SK99, DMK00]. Global lines form an illu-
mination network, which can replace the geometry of the
surfaces or the density of the volume in illumination compu-
tations [HDKS00, SMKY04].

In this paper we extend the global line bundle illumination
network concept to participating media represented by a par-
ticle system, and obtain the particle radiance with iteration.
Since the iteration works on the illumination network, it does
not require ray casting or queries of the particle system. En-
coding the illumination networks by textures, the GPU can
calculate a scattering step on all particles and in all sampled
directions rendering a single textured quadrilateral.

2. Multiple scattering in volumes

Let us consider how the light goes through participating me-
dia. The change of radiance L on path of length ds and of
direction �ω depends on different phenomena:

• Absorption and outscattering: the light is absorbed or
scattered out from its path when photons collide with the
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particles. If the probability of collision in a unit distance
is τ, then the radiance changes by −τ ·L ·ds due to the col-
lisions. After collision a particle may be either absorbed
or reflected with the probability of albedo a.

• Emission: the radiance may be increased by the photons
emitted by the participating media (e.g. fire). This in-
crease is Le ·ds where Le is the emission density.

• Inscattering: photons originally flying in a different direc-
tion may be scattered into the considered direction. The
expected number of scattered photons from differential
solid angle dω′ equals to the product of the number of
incoming photons and the probability that the photon is
scattered from dω′ to �ω. The scattering probability is the
product of the collision probability (τ), the probability of
not absorbing the photon (a), and the probability density
of the reflection direction, called phase function P. We use
the Henyey-Greenstein phase function [HG40, CS92]:

P(�ω′,�ω) =
1

4π
· 3(1−g2) · (1+(�ω′ ·�ω)2)

2(2+g2) · (1+g2 −2g(�ω′ ·�ω))3/2
,

where g ∈ (−1,1) is a material property describing how
strongly the material scatters forward or backward.
Taking into account all incoming directions Ω′, we obtain
the following radiance increase due to inscattering:

ds · τ(s) ·a(s) ·



∫

Ω′

L(s,�ω′) ·P(�ω′,�ω) dω′

 .

Adding the discussed changes, we obtain the following
volumetric rendering equation for radiance L of the ray at
s+ds:

L(s+ds,�ω) = (1− τ(s) ·ds) ·L(s,�ω)+ds ·Le(s,�ω)+

ds · τ(s) ·a(s) ·
∫

Ω′

L(s,�ω′) ·P(�ω′,�ω) dω′. (1)

2.1. Particle system model

The particle system model of the volume corresponds to a
discretization, when we assume that scattering can happen
only at N discrete points called particles. We assume that
particles are sampled randomly, preferably from a distribu-
tion proportional to collision density τ, and we do not re-
quire them to be placed at grid points [GRWS04]. As demon-
strated in [HL01] such particle systems can generate accept-
able clouds with a few hundred particles. Let us assume that
particle p represents its spherical neighborhood of diame-
ter ∆sp, and introduce its opacity as αp = 1− e−τp·∆sp , its
emission as Ep = Le ·∆sp, its incoming radiance by Ip, and
ist outgoing radiance by Lp. The discretized volumetric ren-
dering equation at particle p is then:

Lp(�ω) = (1−αp) · Ip(�ω)+Ep(�ω)+

αp ·ap ·
∫

Ω′

Ip(�ω′) ·Pp(�ω′,�ω) dω′.

In homogeneous media, albedo a and phase function P are
the same for all particles. In non-homogeneous media, these
parameters are particle attributes [REK∗04].

3. The proposed solution method

We solve the discretized volumetric rendering equation by
iteration. The volume is represented by a set of randomly
sampled particle positions. Suppose that we have an estimate
of particle radiance values (and consequently, of incoming
radiance values) at iteration step n− 1. The new particle ra-
diance in iteration step n is obtained by substituting these
values to the right side of the discretized volumetric render-
ing equation:

Ln
p(�ω) = (1−αp) · In−1

p (�ω)+Ep(�ω)+

αp ·ap ·
∫

Ω′

In−1
p (�ω′) ·Pp(�ω′,�ω) dω′. (2)

This iteration is convergent if the opacity is in [0,1] and
the albedo is positive and less than 1, which is always the
case for physically plausible materials.

In order to calculate the directional integral representing
the inscattering term of equation 2, we suppose that D ran-
dom directions �ω1, . . . ,�ωD are obtained from uniform dis-
tribution of density 1/(4π), and the integral is estimated by
Monte Carlo quadrature:
∫

Ω′

Ip(�ω′) ·Pp(�ω′,�ω) dω′ ≈ 1
D
·

D

∑
d=1

Ip(�ω′
d) ·Pp(�ω′

d ,�ω) ·4π.

Note that replacing the original integral by its approximat-
ing quadrature introduces some error in each iteration step,
which accumulates during the iteration. This error can be
controlled by setting D according to the albedo of the partic-
ipating media since if the error of a single step is ε and the
albedo is a, then the error is bound by ε/(1−a).

3.1. Building the illumination network
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Figure 1: Illumination and visibility networks

If we use the same set of sample directions for all parti-
cles, then the incoming radiance and therefore the outgoing
radiance are needed only at these directions during iteration.
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For a single particle p, we need D incoming radiance values
Ip(�ωd) in �ω1, . . . ,�ωD, and the reflected radiance needs to be
computed exactly in these directions. In order to update the
radiance of a particle, we should know the indices of the par-
ticles visible in sample directions, and also the distances of
these particles to compute the opacity. This information can
be stored in two-dimensional arrays I and V of size N ×D,
indexed by particles and directions respectively (figure 1).
Array I is called the illumination network and stores the in-
coming radiance values of the particles on the wavelengths
of red, green, and blue. Array V is the visibility network and
stores index of visible particle vp and opacity α for each par-
ticle and incoming direction, that is, it identifies from where
the given particle can receive illumination (figure 2).

particles

directions

particles

r,g,b vp,a

pp

d

vp

pvp
r,g,b

illumination network visibility network

ωd

Figure 2: Storing the networks in arrays

In order to handle emissions and the direct illumination of
light sources, we use a third array E that stores the sum of
the emission and the reflection of the direct illumination for
each particle and discrete direction. This array can be initial-
ized by rendering the volume from the point of view of the
light source and identifying those particles that are directly
visible. At a particular particle, the discrete direction clos-
est to the illumination direction is found, and the reflection
of the light source is computed from the incoming discrete
direction for each outgoing discrete direction.

Visibility network V expressing the visibility between
particles is constructed during a preprocessing phase (fig-
ure 3). The bounding sphere of the volume is constructed
and then D uniformly distributed points are sampled on its
surface. Each point on the sphere defines a direction aiming
at the center of the sphere, and also a plane perpendicular to
the direction. A square window is set on this plane to include
the projection of the volume, and the window is discretized
to M×M pixels.

When a particular direction is processed, particles are or-
thographically projected onto the window, and rendered us-
ing a standard z-buffer algorithm, having set the color of par-
ticle p equal to its index p (figure 3). The contents of the
image and depth buffers are read back to the CPU memory,
and the indices and depths of the visible particles are stored
together with the pixel coordinates. The particles that were
visible in the preceding rendering step are ignored in the
subsequent rendering steps. Repeating the rendering for the
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Figure 3: Constructing the visibility network

remaining particles and reading back the image and depth
buffers again, we can obtain the indices of those particles
which were occluded in the previous rendering step. Pairing
these indices to those previously obtained ones which have
the same pixel coordinates, we can get the pairs of particles
that occlude each other in the given direction. On the other
hand, the difference of the depth values is the distance of
the particles, from which the opacity can be computed. Re-
peating the same step until the image is empty, we can build
lists of particles that are projected onto the same pixel. Sub-
sequent pairs of these lists define a single row of array V
corresponding to this direction (figure 2). Executing this al-
gorithm for all predefined directions, the complete array can
be filled up.

Note that multiple z-buffer steps carry out a depth-peeling
procedure. Since this happens in the preprocessing step, its
performance is not critical. However, if we intend to modify
the illumination network during rendering in order to cope
with animated volumes, then the performance should be im-
proved. Fortunately, the depth peeling process can also be
realized on the GPU as suggested by [Eve01, Hac04].

3.2. Setting the parameters of the illumination network

The illumination network depends on radius R of the bound-
ing sphere, number of discrete directions D, and on resolu-
tion of the windows M ×M. These parameters are not inde-
pendent, but must be set appropriately taking into account
the density of the medium as well. Since point rendering is
used during the projection onto the window of size 2R×2R
and of resolution M × M, the projected area of a particle
is implicitly set to A = 4R2/M2. The solid angle in which
a particle at point �x is seen from another particle at �y is
∆ω = A/|�x−�y|2. Approximating the maximum distance by
the expected free run length 1/τ, we get ∆ω ≥ Aτ2.

If we do not want to miss particle interactions due to
the insufficient number of sample directions, solid angle ∆ω
should not be smaller than the solid angle assigned to a sin-
gle directional sample, which is 4π/D. Substituting the im-
plicit projected area of a particle, we obtain that the num-
ber of sample directions and the resolution of the window
should meet D · (Rτ)2/π ≥ M2. The number of sample di-
rections is typically 128, factor Rτ is the expected number of
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collisions while the light travels through half of the volume,
which usually ranges in 10–100, thus maximum resolution
M is in 60–600, i.e. it is usually quite small.

3.3. Iterating the illumination network

The solution of the global illumination problem requires the
iteration of the illumination network. A single step of the
iteration evaluates the following formula for each particle
p = 1, . . . ,N and for each incoming direction i = 1, . . . ,D:

I[p, i] = (1−αV[p,i]) · I[V[p, i], i]+E[V[p, i], i]+

4π ·αV[p,i] ·aV[p,i]

D
·

D

∑
d=1

I[V[p, i],d] ·PV[p,i](�ω
′
d ,�ωi).

Interpreting the two-dimensional arrays of the emission,
visibility and illumination maps as textures, the graphics
hardware can also be exploited to update the illumination
network. The first texture is visibility network V storing the
visible particle in red and the opacity in green channels, the
second stores emission array E in the red, green, and blue
channels, and the third texture is the illumination map, which
also has red, green and blue channels. Note that in practi-
cal cases number of particles N is about a thousand, while
number of sample direction D is typically 128, and radiance
values are half precision floating point numbers, thus the to-
tal size of these textures is quite small (1024× 128× 8× 2
bytes = 2 Mbyte).

I[vp,d]

I[vp,d’]

I[vp,i]

V[p,i] = vp

pdirection i

radiance I[p,i]

P(d,i)

Figure 4: Notations in the pixel shader code

In the GPU implementation a single iteration step is the
rendering of a viewport sized, textured rectangle, having set
the viewpoint resolution to N×D and the render target to the
texture map representing the updated illumination network.
A pixel corresponds to a single particle and single direc-
tion, which are also identified by input variable texcoord.
The pixel shader obtains the visibility network from texture
Vmap, the emission array from texture Emap, and the illu-
mination map from texture Imap. Function P is responsible
for the phase function evaluation, which is implemented by a
texture lookup of prepared values allowing other phase func-
tions to be also easily incorporated [REK∗04]. In this simple
implementation we assume that opacity alpha is precom-
puted and stored in the visibility texture, but albedo alb are
constant for all particles. Should it not be the case, the albedo
could also be looked up in a texture.

When no other particle is seen in the input direction, then
the incoming illumination is taken from the sky radiance
(sky). In this way not only a single sky color, but sky il-
lumination textures can also be used [PSS99, REK∗04].

For particle p and direction i, the pixel shader finds opac-
ity alpha and visible particle vp in direction i, takes its
emission or direct illumination Evp, and computes and ra-
diance Ip as the sum of the direct illumination and the re-
flected radiance values for its input directions d = 1...D
(figure 4):

float p = texcoord.x; // particle
float i = texcoord.y; // input direction
float vp = tex2d(Vmap, float2(p,i)).r;
if (vp >= 0) { // another particle is seen

float alpha = tex2d(Vmap, float2(p,i)).g;
float3 Evp = tex2d(Emap, float2(vp,i)).rgb;
float3 Ivp = tex2d(Imap, float2(vp,i));
float3 Ip = (1 - alpha) * Ivp + Evp;
for(int d = 0; d < 1; d += 1.0/D) {

Ivp = tex2d(Imap, float2(vp, d));
float3 BRDF = alb * alpha * P(d,i);
Ip += BRDF * Ivp * 4 * PI / D;

}
return Ip;

} else return sky; // no particle is seen

The illumination network provides a view independent ra-
diance representation. When the final image is needed, we
can use a traditional participating media rendering method,
which sorts the particles according to their distance from the
camera, splats them, and adds their contributions with alpha
blending.

When the outgoing reflected radiance of a particle is
needed, we compute the reflection from the sampled in-
coming directions to the viewing direction. Finally the sum
of particle emission and direct illumination of the exter-
nal lights is interpolated from the sample directions, and is
added to the reflected radiance.

4. Results

The proposed algorithm has been implemented in
OpenGL/Cg environment and run on an NV6800GT
graphics card. We compute one iteration in each frame, and
when the light sources move, we take the solution of the
previous light position as the initial value of the iteration,
which results in fast convergence.

The results are shown in figures 5, 6, and 7. Where it is not
explicitly stated, the cloud model consists of 1024 particles,
and 128 discrete directions are sampled. With these settings
the typical rendering speed is about 26 frames per second,
and is almost independent of the number of light sources and
of the existence of sky illumination. The albedo is 0.9, and
the expected number of photon–particle collisions (2Rτ) is
20, and material parameter g is 0. Figures 5 shows how two
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20 iterations 40 iterations 60 iterations 80 iterations

Figure 6: A cloud illuminated by two directional lights rendered with different iteration steps

Figure 5: Cloud illuminated by two dynamic directional
light sources (the first is left-up, the second is bottom-right)
and sky illumination, and rendered by an animated camera
at 26 FPS.

external light sources illuminate the cloud. In figure 6 we
can follow the evolution of the image of the same cloud af-
ter different iteration steps, where we can observe the speed
of convergence. Figure 7 describes how the number of sam-
ple directions and the number of particles affect the image
quality and the rendering speed. Note that using 128 direc-
tions and 512 particles we can obtain believable clouds at
interactive frame rates, and the method is not too sensitive to
the number of discrete directions. Changing the number of
particles, however, has more significant impact on the image.

5. Conclusions

This paper presented a global illumination algorithm for par-
ticipating media, which works with a prepared visibility net-
work, and maintains a similar illumination network. These
networks are two-dimensional arrays that can be stored as
textures and managed by the graphics hardware. The result-
ing algorithm can render multiple scattering effects at high
frame rates.

The current implementation assumes that the volume is
static. To cope with evolving volumes, such as clouds in
wind, fire, or smoke, we plan to gradually update the illu-
mination network, re-evaluating the visibility just in a single
direction at a time, and thus amortizing the cost of the build-
ing the data structure during animation. We also plan to ex-
tend the method for hierarchical particle systems to handle
complex phenomena.
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Figure 8: Globally illuminated clouds of 512 particles rendered with 128 directions at 45 FPS.
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